Infinite Series of E-Functions
نویسندگان
چکیده
منابع مشابه
Infinite Series
so π is an “infinite sum” of fractions. Decimal expansions like this show that an infinite series is not a paradoxical idea, although it may not be clear how to deal with non-decimal infinite series like (1.1) at the moment. Infinite series provide two conceptual insights into the nature of the basic functions met in high school (rational functions, trigonometric and inverse trigonometric funct...
متن کاملIrrationality of certain infinite series
In this paper a new direct proof for the irrationality of Euler's number e = ∞ k=0 1 k! is presented. Furthermore, formulas for the base b digits are given which, however, are not computably effective. Finally we generalize our method and give a simple criterium for some fast converging series representing irrational numbers.
متن کاملOn characterizations of weakly $e$-irresolute functions
The aim of this paper is to introduce and obtain some characterizations of weakly $e$-irresolute functions by means of $e$-open sets defined by Ekici [6]. Also, we look into further properties relationships between weak $e$-irresoluteness and separation axioms and completely $e$-closed graphs.
متن کاملInfinite-horizon choice functions∗
We analyze infinite-horizon choice functions within the setting of a simple technology. Efficiency and time consistency are characterized by stationary consumption and inheritance functions, as well as a transversality condition. In addition, we consider the equity axioms Suppes-Sen, Pigou-Dalton, and resource monotonicity. We show that Suppes-Sen and Pigou-Dalton imply that the consumption and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Glasgow Mathematical Association
سال: 1958
ISSN: 2040-6185,2051-2104
DOI: 10.1017/s2040618500033803